2022년 7월 EMBC (IEEE Engineering in Medicine & Biology Society) 콘퍼런스에서 공개된 weakly supervised polyp segmentation 논문입니다. 힘들게 구한 논문인데 4쪽짜리 논문이었고, image-level labeled 데이터만 사용한 줄 알았으나 그게 아니었습니다... 1. Introduction 여타 논문들처럼 대장암(CRC, Colorectal cancer)의 발병률 및 치명율을 언급하면서, 대장내시경을 통한 조기진단이 생존율을 높인다는 이야기로 시작하고, U-net과 같은 encoder-decoder 아키텍처 기반의 모델들이 polyp detection, segmentation, characterization 등에 사용되기 시작..
Polyp segmentation에서 SOTA를 기록했던 모델입니다. pyramid Transformer Encoder와 Local Emphasis라는 강조 모듈을 사용한 Progressive Locality Decoder를 사용해 성능을 높였다고 합니다. 여기서 속도를 개선해 real-time task에 알맞게 만든 모델이 ESFPNet입니다. Abstract 대장내시경은 대장암을 조기에 찾아내는 데에 필요한 폴립 탐지에 가장 효율적인 기술 사이즈, 형태가 다 다르고 정상 점막과의 경계도 희미해서 정확한 segmentation이 여전히 도전과제임 폴립 이미지가 매우 다양해서 딥러닝 모델조차 현재 데이터셋에 오버 피팅되기 쉬움 pyramid Transformer encoder를 이용한 SSFormer를 ..
현재 기준 (2022년 10월 24일) paperswithcode Medical Image Segmentation 분야에서 SOTA를 기록한 알고리즘입니다. 최근에 내시경 영상을 이용한 병변 detection & segmentation을 연구하고 있어 읽어보았습니다. Mix Transformer와 feature-pyramid 모델을 결합해 real-time segmentation이 가능한 모델을 제시했습니다. ABSTRACT - 폐암은 세계적으로 가장 치명적인 질병이기때문에 조기에 발견하는 것이 중요함 - 기관지 내시경(bronchoscopy)으로 이를 탐지하는 게 가장 효율적임 - 전문의들은 white-light bronchoscopy (WLB), autofluorescence bronchoscopy ..